Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 869: 161705, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682566

RESUMO

The effective management of species with small and fragmented populations requires an in-depth understanding of how the effects of human-induced habitat disturbance shape the structure and gene flow at fine spatial scales. Identification of putative environmental barriers that affect individual exchange among subpopulations is imperative to prevent extinction risks. Here, we investigated how landscape affects the gene flow and relatedness structure of a population of the endangered lesser horseshoe bat (Rhinolophus hipposideros). We also assessed the effects of sexbiased dispersal on genetic relatedness. We genotyped 287 bat samples collected across southern Portugal and developed resistance surfaces for landscape variables hypothesized to affect gene flow. Then, we used spatially explicit models to fit relatedness distance through the resistance surfaces. We found genetic evidence of sex-biased dispersal and identified a significant fine scale structuring in the relatedness regarding females, the philopatric sex. Males displayed uniform levels of relatedness throughout the landscape. The results indicated less relatedness between the female´ from roosts located on proximity of roads than in roosts away from roads. Also, when analysing the sexes together the relatedness on roosts separated by highway were subtly less related in comparison to those occurring on the same side. Roads seem to be major shapers of the contemporary population structure of females, regardless of being relatively recent structures in the landscape. Furthermore, the relatedness patterns detected suggested that high tree density among roosts and continuity of forest patches in broader surrounding areas, promotes the relatedness among individuals. Landscape heterogeneity among roosts slightly decreases genetic relatedness. Nevertheless, those relationships are still weak, suggesting that population structuring driven by those factors is slowly ongoing. Thus, effective management measures should focus on issues for promoting safe road passages and suitable habitat corridors, allowing for the exchange of individuals and gene flow among lesser horseshoe bat roosts.


Assuntos
Quirópteros , Humanos , Masculino , Animais , Feminino , Quirópteros/genética , Florestas , Ecossistema , Árvores , Fluxo Gênico , Genética Populacional
2.
Ecology ; 103(6): e3654, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35132618

RESUMO

Mammals are threatened worldwide, with ~26% of all species being included in the IUCN threatened categories. This overall pattern is primarily associated with habitat loss or degradation, and human persecution for terrestrial mammals, and pollution, open net fishing, climate change, and prey depletion for marine mammals. Mammals play a key role in maintaining ecosystems functionality and resilience, and therefore information on their distribution is crucial to delineate and support conservation actions. MAMMALS IN PORTUGAL is a publicly available data set compiling unpublished georeferenced occurrence records of 92 terrestrial, volant, and marine mammals in mainland Portugal and archipelagos of the Azores and Madeira that includes 105,026 data entries between 1873 and 2021 (72% of the data occurring in 2000 and 2021). The methods used to collect the data were: live observations/captures (43%), sign surveys (35%), camera trapping (16%), bioacoustics surveys (4%) and radiotracking, and inquiries that represent less than 1% of the records. The data set includes 13 types of records: (1) burrows | soil mounds | tunnel, (2) capture, (3) colony, (4) dead animal | hair | skulls | jaws, (5) genetic confirmation, (6) inquiries, (7) observation of live animal (8), observation in shelters, (9) photo trapping | video, (10) predators diet | pellets | pine cones/nuts, (11) scat | track | ditch, (12) telemetry and (13) vocalization | echolocation. The spatial uncertainty of most records ranges between 0 and 100 m (76%). Rodentia (n =31,573) has the highest number of records followed by Chiroptera (n = 18,857), Carnivora (n = 18,594), Lagomorpha (n = 17,496), Cetartiodactyla (n = 11,568) and Eulipotyphla (n = 7008). The data set includes records of species classified by the IUCN as threatened (e.g., Oryctolagus cuniculus [n = 12,159], Monachus monachus [n = 1,512], and Lynx pardinus [n = 197]). We believe that this data set may stimulate the publication of other European countries data sets that would certainly contribute to ecology and conservation-related research, and therefore assisting on the development of more accurate and tailored conservation management strategies for each species. There are no copyright restrictions; please cite this data paper when the data are used in publications.


Assuntos
Carnívoros , Ecossistema , Animais , Mudança Climática , Mamíferos , Portugal , Coelhos , Roedores
3.
Mol Ecol ; 30(19): 4673-4694, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34324748

RESUMO

Understanding the neutral (demographic) and adaptive processes leading to the differentiation of species and populations is a critical component of evolutionary and conservation biology. In this context, recently diverged taxa represent a unique opportunity to study the process of genetic differentiation. Northern and southern Idaho ground squirrels (Urocitellus brunneus-NIDGS, and U. endemicus-SIDGS, respectively) are a recently diverged pair of sister species that have undergone dramatic declines in the last 50 years and are currently found in metapopulations across restricted spatial areas with distinct environmental pressures. Here we genotyped single-nucleotide polymorphisms (SNPs) from buccal swabs with restriction site-associated DNA sequencing (RADseq). With these data we evaluated neutral genetic structure at both the inter- and intraspecific level, and identified putatively adaptive SNPs using population structure outlier detection and genotype-environment association (GEA) analyses. At the interspecific level, we detected a clear separation between NIDGS and SIDGS, and evidence for adaptive differentiation putatively linked to torpor patterns. At the intraspecific level, we found evidence of both neutral and adaptive differentiation. For NIDGS, elevation appears to be the main driver of adaptive differentiation, while neutral variation patterns match and expand information on the low connectivity between some populations identified in previous studies using microsatellite markers. For SIDGS, neutral substructure generally reflected natural geographical barriers, while adaptive variation reflected differences in land cover and temperature, as well as elevation. These results clearly highlight the roles of neutral and adaptive processes for understanding the complexity of the processes leading to species and population differentiation, which can have important conservation implications in susceptible and threatened species.


Assuntos
Genética Populacional , Genômica , Animais , Genótipo , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética , Sciuridae/genética
4.
Proc Biol Sci ; 288(1951): 20210577, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034517

RESUMO

Tasmanian devils (Sarcophilus harrisii) are evolving in response to a unique transmissible cancer, devil facial tumour disease (DFTD), first described in 1996. Persistence of wild populations and the recent emergence of a second independently evolved transmissible cancer suggest that transmissible cancers may be a recurrent feature in devils. Here, we compared signatures of selection across temporal scales to determine whether genes or gene pathways under contemporary selection (six to eight generations) have also been subject to historical selection (65-85 Myr). First, we used targeted sequencing, RAD-capture, in approximately 2500 devils in six populations to identify genomic regions subject to rapid evolution. We documented genome-wide contemporary evolution, including 186 candidate genes related to cell cycling and immune response. Then we used a molecular evolution approach to identify historical positive selection in devils compared to other marsupials and found evidence of selection in 1773 genes. However, we found limited overlap across time scales, with only 16 shared candidate genes, and no overlap in enriched functional gene sets. Our results are consistent with a novel, multi-locus evolutionary response of devils to DFTD. Our results can inform conservation by identifying high priority targets for genetic monitoring and guiding maintenance of adaptive potential in managed populations.


Assuntos
Neoplasias Faciais , Marsupiais , Neoplasias , Animais , Neoplasias Faciais/genética , Neoplasias Faciais/veterinária , Genômica , Marsupiais/genética , Neoplasias/genética , Neoplasias/veterinária
5.
Mol Ecol ; 30(6): 1361-1363, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33421215

RESUMO

Invasive species have the ability to colonize new habitats across distinct areas of the globe, rapidly adjusting to new biotic and abiotic conditions, and often experiencing little impact from the decrease in effective population size and genetic diversity. Still, as each invading population represents a subsample of the original native distribution, it is common to see variability in terms of the genetic makeup of invading populations and consequently differences in invasion success rates across their non-native range (Blackburn et al., 2017). In a From the Cover article in this issue of Molecular Ecology, Stuart et al. (2020) used genotyping-by-sequencing to explore how landscape and environmental heterogeneity shaped the genetic population structure and adaptation of multiple invasions of the common starling in Australia, and compared it to the patterns observed in North America, examined in Hofmeister et al. (2019). Their results suggest that the common starling worldwide invasion has been driven by a handful of genes that allowed adaptation to extreme environmental conditions and might be the key for differences in invasion success.


Assuntos
Espécies Introduzidas , Estorninhos , Animais , Austrália , Genética Populacional , América do Norte
6.
Evolution ; 74(7): 1392-1408, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32445281

RESUMO

Landscape genomics studies focus on identifying candidate genes under selection via spatial variation in abiotic environmental variables, but rarely by biotic factors (i.e., disease). The Tasmanian devil (Sarcophilus harrisii) is found only on the environmentally heterogeneous island of Tasmania and is threatened with extinction by a transmissible cancer, devil facial tumor disease (DFTD). Devils persist in regions of long-term infection despite epidemiological model predictions of species' extinction, suggesting possible adaptation to DFTD. Here, we test the extent to which spatial variation and genetic diversity are associated with the abiotic environment (i.e., climatic variables, elevation, vegetation cover) and/or DFTD. We employ genetic-environment association analyses using 6886 SNPs from 3287 individuals sampled pre- and post-disease arrival across the devil's geographic range. Pre-disease, we find significant correlations of allele frequencies with environmental variables, including 365 unique loci linked to 71 genes, suggesting local adaptation to abiotic environment. The majority of candidate loci detected pre-DFTD are not detected post-DFTD arrival. Several post-DFTD candidate loci are associated with disease prevalence and were in linkage disequilibrium with genes involved in tumor suppression and immune response. Loss of apparent signal of abiotic local adaptation post-disease suggests swamping by strong selection resulting from the rapid onset of DFTD.


Assuntos
Interação Gene-Ambiente , Interações Hospedeiro-Patógeno/genética , Marsupiais/genética , Seleção Genética , Adaptação Biológica , Animais , Variação Genética
7.
Mol Ecol ; 27(17): 3452-3465, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30030869

RESUMO

Climate change and increasing habitat loss greatly impact species survival, requiring range shifts, phenotypic plasticity and/or evolutionary change for long-term persistence, which may not readily occur unaided in threatened species. Therefore, defining conservation actions requires a detailed assessment of evolutionary factors. Existing genetic diversity needs to be thoroughly evaluated and spatially mapped to define conservation units (CUs) in an evolutionary context, and we address that here. We also propose a multidisciplinary approach to determine corridors and functional connectivity between CUs by including genetic diversity in the modelling while controlling for isolation by distance and phylogeographic history. We evaluate our approach on a Near Threatened Iberian endemic rodent by analysing genotyping-by-sequencing (GBS) genomic data from 107 Cabrera voles (Microtus cabrerae), screening the entire species distribution to define categories of CUs and their connectivity: We defined six management units (MUs) which can be grouped into four evolutionarily significant units (ESUs) and three (putatively) adaptive units (AUs). We demonstrate that the three different categories of CU can be objectively defined using genomic data, and their characteristics and connectivity can inform conservation decision-making. In particular, we show that connectivity of the Cabrera vole is very limited in eastern Iberia and that the pre-Pyrenean and part of the Betic geographic nuclei contribute the most to the species genetic diversity. We argue that a multidisciplinary framework for CU definition is essential and that this framework needs a strong evolutionary basis.


Assuntos
Arvicolinae/genética , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Genética Populacional , Animais , Técnicas de Genotipagem , Filogeografia , Polimorfismo de Nucleotídeo Único , Portugal , Espanha
8.
Mol Phylogenet Evol ; 125: 85-92, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29574272

RESUMO

Sequential rapid radiations pose some of the greatest difficulties in phylogenetics, especially when analysing only a small number of genetic markers. Given that most of the speciation events occur in quick succession at various points in time, this creates particular challenges in determining phylogenetic relationships, i.e. branching order and divergence times. With the development of high throughput sequencing, thousands of markers can now readily be used to tackle these issues. Microtus is a speciose genus currently composed of 65 species that evolved over the last 2 million years. Although it is a well-studied group, there is still phylogenetic uncertainty at various divergence levels. Building upon previous studies that generally used small numbers of mitochondrial and/or nuclear loci, in this genomic-scale study we used both mitochondrial and nuclear data to study the rapid radiation within Microtus, using partial mitogenomes and genotyping-by-sequencing (GBS) on seven species representing five Microtus subgenera and the main biogeographic ranges where this group occurs. Both types of genome (mitochondrial and nuclear) generated similar tree topologies, with a basal split of the Nearctic (M. ochrogaster) and Holarctic (M. oeconomus) species, and then a subdivision of the five Palearctic species into two subgroups. These data support the occurrence of two European radiations, one North American radiation, and a later expansion of M. oeconomus from Asia to both Europe and North America. We further resolved the positioning of M. cabrerae as sister group of M. agrestis and refute the claim that M. cabrerae should be elevated to its own genus (Iberomys). Finally, the data support ongoing speciation events, especially within M. agrestis, with high levels of genetic divergence between the three Evolutionarily Significant Units (ESUs) previously identified. Similar high levels of divergence were also found among ESUs within M. oeconomus and M. arvalis.


Assuntos
Arvicolinae/classificação , Arvicolinae/genética , Genômica , Filogenia , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...